方式,开发工具和使用的方法。
自己则尝试将自己这段时间以来所准备的算法基于该框架实现,但是不太顺利。
其实阿里克斯自己在主页上也意识到了这个问题,他称自己主页对代码的描述是非常不充分的。
而此时非常不完善的生态也进一步地加剧了这个问题,英伟达的CUDA起步不算太久,不同版本之间的代码又需要改动。
孟繁岐更换了几个代码库的版本,结果显卡GTX-690的驱动似乎有哪里不兼容,部分代码的编译也不顺利。他相信这份代码本身是阿里克斯发布出来的比较成熟的版本,不会有什么问题。只是环境和调试上确实是一件麻烦事。
此时的AI技术不能说是小众,但也没有到这种细节问题都随处可查的地步。孟繁岐浏览了一下相关的技术网站,查看了一些相关讨论。
虽然解决了大部分问题,但终究还是剩下了一些。
“没办法了,只能写邮件给阿里克斯求助一下。”孟繁岐倒不是很担心阿里克斯愿不愿意回复的问题,只要自己表明来意,说清楚自己希望以深度神经网络参赛IMAGENET-2013,阿里克斯是一定愿意伸出自己的援手的。
众所周知,AI三巨头是辛顿,立昆(Lecun)和本吉奥(Bengio)三人。2018年的图灵奖由这三人共同获得,以表彰他们多年来的坚持和贡献。
新时代的AI起飞靠得核心技术是深度神经网络,但在60和80年代的两次热潮之余,神经网络其实并没有得到足够的重视。
阿里克斯是辛顿的学生,2012年两人和师门其他人一起以AlexNet参赛IMAGENET-2012的时候,是唯一一个使用神经
本章未完,请点击下一页继续阅读! 第2页 / 共5页