核心思想,就是如何把深度网络做得更加‘深’。
另一方面,它的实现和结构简洁,抛弃了大量人类看来很有道理和价值,但实际上其实用处不大的设计。
将简洁好用的结构反复重复,这也大大地降低了孟繁岐所需要的开发工程量。
AlexNet是八层的结构,各自有一些独立的设计,在此时,8层已经是革命性的深度网络了。
更深的网络特别难以训练,因此原本直到14年,谷歌和牛津才分别把这个深度推进到22层和19层。
而ResNet的思想,彻底从根本上解决了网络变深就没法顺利训练的问题。它让50,100,150,甚至1000层网络的训练成为可能。
“从去年的8,到今年的100+层,甚至1000层也可以训练。在2013年的视角来看,这一剂猛药应该够劲了。”
不仅是深度上取得了开创性的突破,ResNet的性能也同样惊人。它是第一个Top-5错误率低于人类能力的结构,单模型达到了4.6%左右。
如果综合几个不同方式训练的ResNet,平均他们的输出再去预测的话,其TOP-5错误率甚至低至3.7%。
“其实在IMAGENET上做得太准了反而是一件怪事。”考虑到后世的研究中,该数据集中的标签其实有不小的比例是错误的,越贴近百分之百的准确率反而越有一些荒诞的感觉。
ResNet的Res指residual,正经点说是残差,说得明白一些是一种短路或者是跳跃链接。
再说的浅显一点,假设原本的操作为f(x),Res
本章未完,请点击下一页继续阅读! 第3页 / 共5页