;
孟繁岐在查看提交结果的信息,乍一听愣了一下,“C罗还有弟弟呢?”
仔细一想才回过味来,搞了半天是二弟。
其实11月11号,提交网站就已经被公布出来了,这一年的提交窗口期很短,也不像后来的很多竞赛那样分验证集,在赛时开放公共榜单提交。
11月13号,结果的提交就会截止。
不知不觉又是四五十天过去,孟繁岐反复打磨了几遍这几篇论文。
不仅如此,等到后来他发觉论文里的实验已经跑完,便将检测算法接在了已经训练了很久的分类模型上,又跑起了检测赛事的数据。
检测任务是分类任务的进阶,在你的程序分辨出这张图片的类别之后,更进一步的操作就是用矩形框把该物体的位置在图片中位置给圈出来。也就是后来大家熟悉的人脸上的框框。
再进一步就是分割了,不采用矩形框这样大的,规则的图形,而是像素级别地把某个物体的细致轮廓在图片上表示出来,也就是一种类似自动抠图的操作。
当然了,不论是检测还是分割,都是需要人工去标注训练集的原始答案的。
IMAGENET-2013的检测赛道数据集不算太大,一共接近40万张图片,共区分200类。这种进阶类型的数据,标注起来要辛苦很多,因此数据量和分类不可同日而语。
不过,相比2012年的5717张,区区一年的时间,已经是百倍的巨大飞跃了。
“没想到时间竟然会这么多。”孟繁岐记得这时候的检测大多数还是基于传统HOG,LBP的办法,在13
本章未完,请点击下一页继续阅读! 第2页 / 共5页