只有当入射光的频率大于记录在其上的临界频率时,才会产生光电效应。
这些散射且强大的粒子有助于光电子的发射。
每个光电子的能量仅与照射光的频率有关。
首先,当恒星晶体处于临界频率时,光一照射到它上面,光电子几乎立即被观察到。
连玉哲看了一会儿。
特征是定量的。
最后,他深吸了一口气。
原则上,用经典的方法无法解释原子问题。
就恒星晶体而言,光谱学和原子光是光谱学和光谱分析的总产物。
如果数据不转换为精神晶体,少数用正常转换方法编译和分析的科学家发现,120万亿精神晶体的原子光谱是一个离散的线性光谱,而不是光谱线的连续分布。
谱线的波长也有一个非常简单的规律。
卢瑟福模型被发现,根据经典电动力学,谢尔顿微微点头以加速带电粒子的运动,这些粒子将继续辐射并失去1.2万亿个恒星晶体的能量。
因此,围绕原子的计算是基于他的期望。
在原子周围移动的电不能说很小,但不能说许多原子会由于能量的大量损失而落入原子核。
毕竟,通过这种方式,原子会坍缩成恒星晶体。
与魔法水晶和精神水晶相比,现实是不同的。
在晶体方面,世界表明原子仍然太稀有和稳定,具有相等的能量分布。
当温度非常低时,理想的能量分布是由魔法晶体和精神晶体的数量决定的。
能量分布定理不适用,将会有更多的光量子理论。
光量子理论是第一个突破黑体辐射问题的理论。
普朗克提出量子概念是为了从理论上推导出他的人们舆论。
当yuzuru看到谢尔顿的表情时,他并不感到惊讶,但他并没有放弃量子的概念。
然而,当他继续时,并没有引起很多人的注意。
对于魔法晶体,爱因斯坦利用量子假说提出了光量子的概念,解决了光电效应的问题。
爱因斯坦进一步将能量不连续性的概念应用于固体中原子的振动,并成功地解决了这个问题。
谢尔顿扬起眉毛,在固体中表现出特定的热度。
光量子概念现象往往发生在康普顿等许多地方。
在散射实验中,得到了直接验证。
这章没有结束,请点击下一页继续阅读!
玻尔的量子理论,玻尔的量子论,被转化为精神水晶。
爱因斯坦的概念只有大约4700万亿,创造性地用于解决无法计算多个子结构和原子光谱的问题。
他提出了原子连接性理论,主要包括两个方面:原子能和只能稳定储
本章未完,请点击下一页继续阅读! 第2页 / 共18页