关的论文,钻研起来。
接连解决两道千禧年难题,都获得了自由属性点,陈辉猜测,解决黎曼猜想,大概率还能获得一个自由属性点。
既然一时半会无法进行可控核聚变的研究,陈辉索性转变思路,先提升自身属性,等到回去后,很多问题想必就能迎刃而解了。
黎曼猜想的内容很简单,黎曼ζ函数的所有非平凡零点均位于复平面上的临界线(Re(s)=1/2)上。
这也是黎曼猜想民科含量超标的原因,似乎任何一个上过小学的人都能对它指指点点。
但想要理解这句话真正的含义却并没有那么简单。
黎曼的这个猜想主要是用来描述自然数中素数的分布。
目前计算机已经验证了前15亿个非平凡零点均位于临界线上,但严格数学证明仍未完成,如果这个猜想能得到严格的数学在证明,可精确描述素数在自然数中的分布规律。
那么数论中数以百计的悬而未决问题,比如孪生素数猜想、哥德巴赫猜想等,将会迎刃而解,使这些依赖黎曼猜想的命题升级为定理,极大完善数论体系。
同时证明过程可能需要革命性的方法,如非交换几何、随机矩阵理论等,其价值可能远超猜想本身,类似费马大定理的证明催生了椭圆曲线理论,黎曼猜想的解决或将为代数几何、复分析等领域开辟新方向。
对黎曼ζ函数性质的深入理解将推动复变函数论、调和分析的发展,并为物理和工程领域的数学模型提供更精确的工具,这也是陈辉选择了黎曼猜想作为下一个课题的原因之一。
同时,RSA等公钥加密算法依赖大素数分解的困
本章未完,请点击下一页继续阅读! 第7页 / 共10页